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Abstract—Consensus algorithms in distributed systems have
attracted much attention in recent studies. However, there is a
need for a classification that leads to better understanding and
helps direct the deployment of such algorithms. In this paper, we
classify common consensus algorithms based on how they decide
the order of system state changes. We then determine the extent
to which each category prioritizes scalability, decentralization,
and security. As with other engineering design scenarios, this
is a choose-two tradeoff. Our key contribution is that, based
on this taxonomy of tradeoffs, we are able to discern the types
of consensus algorithms that work well within the application
area(s) for a given distributed system. We find that a dichotomy
of algorithms between leader-based and voting-based consensus
algorithms emerges from this taxonomy. Applications of this
classification scheme include several different categories of dis-
tributed ledgers such as blockchains and directed acyclic graphs
(DAGS).

Index Terms— Consensus algorithms, Blockchain, Distributed
ledger technology (DLTs), Directed acyclic graphs, Scalability
Trilemma, Decentralization, Blockchain security, Leader-based
consensus, Voting-based consensus, Gossip voting, Byzantine Fault
Tolerance, Internet-of-Things (IoT)

I. INTRODUCTION

Many of the systems that modern society depends on such
as hospitals, banks, stock exchanges, and airports need highly
reliable and available systems to function properly. These
systems, however, often experience single points of failure in
some part of their architecture, which makes them susceptible
to crashes, downtime, and/or hacking. Redundancy can be
achieved by creating a network of connected machines and
distributing work and resources across that network. For such
distributed systems to function properly, all machines must
be able to agree on key aspects of the current state of the
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system; otherwise, the system would not be able to work as
a coherent group and any benefits associated with distributing
the system would be lost. Furthermore, the distributed system
must be able to withstand the failure of a subset of its
members in order to be resilient enough to be highly available.
Distributed systems must also be safeguarded against insider
threats arising from circumstances of machine compromise.
The process of agreeing on the current state and deciding what
the next state should be is called reaching consensus [1], which
in the case of distributed systems, is typically carried through
the use of consensus algorithms. Distributed systems that reach
consensus on the current state are known as replicated state
machines [2], which can be used to resolve problems related
to fault tolerance that distributed systems encounter.
Blockchains are a type of distributed system in which each
server, typically called a node, contains a state machine whose
state must match all other nodes’ state, without any node
necessarily knowing or trusting the other nodes in the system.
In order to reach consensus, each blockchain’s consensus
algorithm must be able to guide the process of validating the
current blockchain, help decide which node should create the
next state (i.e., the next block), assist in validating the next
state, and ensure that all nodes agree on the next state [3].
An effective consensus algorithm must carry out these pro-
cedures in an objective and mathematically rigorous manner
to guarantee that all nodes agree on the state of the system,
while preventing the system from failing because of faulty or
malicious behavior [4]. Many different consensus algorithms
have been created to perform these actions as quickly and
securely as possible in a decentralized environment. Because
of this set of possible solutions, it is valuable to categorize
each consensus algorithm so they can be compared and
contrasted. Additionally, identifying each category’s strengths



and weaknesses can both assist an individual or entity in
choosing a more vs. less appropriate consensus algorithm
for their specific use case and help researchers identify a
need for new consensus algorithm(s). However, a classification
for consensus algorithms from different types of distributed
systems that examines system state ordering evidently does
not exist at present. Therefore, we seek to close that gap by
presenting a simpler classification scheme that can be used to
categorize consensus algorithms from several different types
of distributed systems based on how the order of state changes
is decided.

The remainder of this paper is organized as follows: Back-
ground and related work are described in Section II. Our
classification scheme for consensus algorithms, based on how
system state changes are ordered, is described in Section III.
The extent to which each category of consensus algorithms
prioritizes scalability, decentralization, and security, as well
as the benefits, drawbacks, and use cases of each category are
described in Section IV. Finally, Section V offers conclusions.

II. BACKGROUND AND RELATED WORK

First, it is important to differentiate distributed ledger tech-
nology (DLT) from blockchains and directed acyclic graphs
(DAGs). A DLT is a set of data that is replicated, shared,
synchronized, and spread across multiple sites globally with
no central administration or centralized data storage [5].
DLTs have several desirable properties such as immutability,
transparency, anonymity, trust, and decentralization [6], [7].
Immutability means that once a transaction exists within the
ledger, it cannot be changed. DLTs are transparent because
they provide a transparent record of transactions without any
intermediates or third party, and all the participants in the
network have access to the information that is recorded in the
ledger. While the identities of the participants in the network
in DLTs are anonymous, DLTs offer a platform that can
enable trusted communication between parties that may not
necessarily trust each other [7]. Additionally, DLTs have a
single source of truth where the data is edited in one place
only [6], so all participants have the same copy the ledger.
Finally, most DLTs are decentralized geographically but are
owned and maintained by a central authority [5].

Blockchains and DAGs are both types of DLTs, each with
their own unique characteristics [8]. A blockchain is a data
structure in which state changes, which are called transactions,
are grouped together into larger structures called blocks [9].
Each block is created using information about the previous
block, which links the two blocks together. This ensures
that all the data is immutable; if the information in one
block is changed, it will not match what is stored in the
block immediately after it, and the discrepancy will be easily
detected [10]. A DAG is a data structure that is similar to a
blockchain, but with some key differences. While blockchains
have a single chain of blocks, DAGs allow for several chains
to exist and connect simultaneously. To achieve this behavior,
individual state changes are added to the chains as they are
validated, as opposed to grouping state changes together into

blocks and validating the block as a whole. Because state
changes are added as they are validated and transactions are
validated by individual nodes, DAGs have a tree-like structure
in which each state change has an edge connecting it to
another state change that validates it. Despite their differences,
blockchains and DAGs both rely on consensus algorithms to
ensure that all nodes agree on the state of the system [11].

Several classification schemes for both blockchains and
consensus algorithms have been proposed before [12]-[15].
Our classification scheme is designed for consensus algorithms
applied in broad range of distributed systems including, but
not limited to, blockchain technology and distributed ledger
technology. Furthermore, our survey includes a list of recently
proposed consensus algorithms like LibraBFT [16], Hotstuff
[17] and HashGraph [18]. We acknowledge the related work
we came across, studied, and built upon in what follows.

Sankar et al. outlined a classification in [12] for blockchains
based on the degree of centralization. Nguyen and Kim
proposed a binary classification [13] in which blockchain
consensus algorithms are either proof-based where a miner
prove, either through effort or chance, that they deserve to
mine the next block. Or, vote-based where the nodes com-
municate with each other before adding the proposed block
to the blockchain. Wang et al. [14] focused on consensus
protocols used in blockchains that are open for anyone to
join, categorizing them as BFT-based protocols, Nakamoto
protocols, and virtual mining or hybrid protocols based on the
incentive and strategies provided by each algorithm. Cachin
and Vukolic categorized blockchains in [15] to be permis-
sioned or permissionless based on whether participation in
the network is open to the public or to only a specific list
of individuals. They also distinguish consensus algorithms as
crash tolerant or Byzantine fault tolerant depending on the
types of adverse behaviors the system can tolerate. Sankar
et al. [19] and Wahab and Memood [20] survey consensus
algorithms, but do not attempt to classify them.

III. STATE-CHANGE-BASED CLASSIFICATION

As discussed in Section II, there are already several ways of
classifying both blockchains and consensus algorithms. How-
ever, there evidently is not a classification scheme that can be
used to categorize consensus algorithms of blockchains as well
as other kinds of distributed systems based on how the order of
state changes is determined. We outline two categories, leader-
based consensus and voting-based consensus, that can be used
to describe and compare consensus algorithms from a variety
of distributed systems.

A. Leader-Based Consensus

In leader-based consensus algorithms, one node is chosen to
be the leader. The leader is responsible for correctly ordering
the state changes, broadcasting that order all other nodes, and
committing those state changes to the data structure. Though
other nodes may validate the order that the leader provides,
only the leader can change the order and number of state
changes being committed. The leader can be selected in a



Consensus algorithms

( N
Leader- based Voting- based
Consensus Consensus
! |
A J
. R . N
Competitive Collaborative Representative Gossip voting
PoW L_> RAFT > DPoS HashGraph &
Gossip protocol
PoET PBFT
~—» Hotstuff Tangle &
PoS Weight protocol
“—> LibraBFT

Blockchains

DAGs

Fig. 1. Classification of Consensus Algorithms

variety of ways, but there is always at most one leader at
any given time. Leader-based consensus algorithms are further
classified into:

1) Competitive Leader Selection: In competitive leader
selection consensus algorithms, nodes compete for the right
to become the next leader, who is responsible for compiling,
ordering, and committing the next group of state changes,
which usually provides a monetary reward. Typically, there is
a task that each node is trying to complete, and the first node
to complete the task is selected as the next leader. Regardless
of if completing the task requires effort or luck, each node
does whatever it can to increase its chances of completing
the task and being selected as leader. A few of the common
algorithms that fit this definition are:

Proof of Work (PoW): PoW is the most prevalent consensus
algorithm used by blockchains presently, mostly due to its
use by Bitcoin [21]. Invented in 1993 by Cynthia Dwork and
Moni Naor [22], PoW’s simple design and rigorous security
makes it an attractive solution for the consensus problem that
all blockchains must solve. In PoW, nodes must generate
a piece of data which satisfies given requirements that is
computationally difficult to produce and easy to verify. Most
PoW algorithms implement this by creating difficult puzzles,
which can only be solved through brute force [21]. For
example, Bitcoin’s PoW algorithm, called Hashcash, requires
each node to concatenate a given string with a number
called a nonce. The node then hashes the resulting string and
compares it to the current difficulty, which is the number that
the hash must be smaller than in order to count as a correct
answer. If the resulting hash is smaller than the difficulty,
the node has found a correct answer. Otherwise, the node

increments their nonce and repeats the process. Once a node
finds a correct answer, they create a new block containing
the nonce they used to calculate the answer, add the block
to their copy of the blockchain, and broadcast their updated
blockchain to all other nodes in the network. The other nodes
see that a new block has been added, and add the new block
to their copy of the blockchain once they calculate the hash
using the winning nonce and verify that the resulting hash is
lower than the difficulty. Every node that is currently mining
Bitcoin is competing to find a nonce to concatenate to the
hash of the previous block in the blockchain that hashes to
a value lower than the current difficulty. Therefore, once a
new block has been added, all mining nodes must restart the
process of looking for a correct nonce because the hash they
are concatenating the nonce with has changed [21].

Proof of Elapsed Time (PoET): One of the main criticisms
of PoW is that, due to the difficulty of solving the puzzle, it
consumes a lot of power without generating anything useful
[23]. To address this issue, Intel created PoET [24] as an
alternative to PoW that still selects its leaders competitively
but does not waste large amounts of power to do so. Instead
of solving a difficult puzzle, nodes in PoET are each given
a random amount of time they must wait before creating a
new block. Therefore, the node that is assigned the smallest
amount of time will be allowed to create the next block and
broadcast it to all other nodes in the network. To ensure
that all random numbers are assigned fairly, Intel requires
that each node has specialized hardware called the Software
Guard Extensions (SGX). This hardware component ensures
that the algorithm is running with trusted code, and can



verify that the values it generates come from a protected
environment. By using verifiably random numbers, PoET
ensures that each node has an equal chance of being selected
as the next leader without requiring the nodes to waste energy
generating solutions to puzzles. Because each node has an
equal chance of being the next leader, there is nothing that
any node can do to increase its chances of being selected,
which differs from the meritocracy of PoW networks [24].
Proof of Stake (PoS): As blockchain technology evolved
following the release of Bitcoin, it became obvious that PoW’s
scalability limitations and power consumption were too large
for most applications [25]. To address these issues, Sunny
King created PoS and implemented it in Peercoin [26], and
PoS has since emerged as one of the main alternatives to
PoW. In PoS, a node’s likelihood to be selected to create the
next block is proportional to the amount of the blockchain’s
cryptocurrency they own. This eliminates the need for nodes
to complete complex puzzles, so PoS is more scalable and
eco-friendly than PoW. Nodes in PoS algorithms compete
economically rather than computationally, which raises its own
set of problems that must be addressed to prevent malicious
behavior. For example, certain safeguards must be put in
place to ensure that the blockchain is not dominated by a
small number of wealthy nodes [26]. Peercoin prevents this
by basing a node’s stake on their coin age, a number that
considers both the amount of cryptocurrency the node has and
the amount of time that node has owned the cryptocurrency.
Coin age resets once a node is selected to create a block,
which prevents wealthy nodes from dominating the block
creation process. Additionally, while nodes may increase their
likelihood of being selected by owning more coins, the leader
selection has a random element to ensure that the selection
process is fair [27].

2) Collaborative Leader Selection: In collaborative leader
selection consensus algorithms, nodes collaborate to elect
their leader. The leader then receives all state changes and
broadcasts them to the other nodes in the system. The other
nodes, called followers, replicate the state changes broadcast
by the leader and store the result in their individual copy of the
data structure. The following is an example of a collaborative
leader selection algorithm:

Reliable, Replicated, Redundant, And Fault-Tolerant
(RAFT): Since its creation by Leslie Lamport in 1998, the
Paxos algorithm [28] has been the consensus algorithm that
all others look to for inspiration. However, it is difficult to
understand and implement, which led Diego Ongaro and John
Ousterhout to develop RAFT as an alternative to Paxos that is
simple and practical [29]. In RAFT, one node is the leader and
the rest are followers, unless a new leader is in the process of
being elected. The leader has finite amount of time they are
allowed to lead, which is called the term. Each node has its
own individual set of all of the state changes the system has
received, which is called their log. When a new state change
is received, RAFT collapses consensus into two phases: log
propagation and leader election. Leader election occurs if there
is no current leader, the leader is unavailable, or the current

leader’s term has ended. Each node is assigned a random
amount of time they must wait. The first node to wait their
assigned amount of time becomes a candidate and votes for
itself. That node then asks all other nodes to vote for it, which
they do if they have not already cast a vote for the current term
and the candidate’s log is either matches or is longer than their
own. Once one node receives a vote from a majority of other
nodes, that node is elected as the leader for the next term.
This approach guarantees that each node has an equal chance
of being elected as the next leader. Once a leader has been
elected, the log propagation phase begins. During this phase,
the leader receives any state changes in the system, adds the
new state changes to their log, and broadcasts their log to the
followers. The followers then replicate the leader’s log to their
own log. Once a majority of the followers responds confirming
they have replicated the leader’s log, the leader commits the
state changes and notifies the person who requested the state
change. If there is a discrepancy between the leader’s log and
a follower’s log, the follower will send a rejection message.
The leader must then go through each previous entry of their
log and broadcast it to the followers until the discrepancy is
resolved. Once the leader’s term ends, the leader election phase
begins and the process repeats [29].

B. Voting-Based Consensus

In voting-based consensus algorithms, nodes vote for state
changes or blocks that they think are valid directly, rather than
voting for leaders or competing for the right to determine the
order of the state changes. Therefore, while the actual creation
of the block or state change may be done by one node, the
order, contents, and validity of the block or state change is
decided by multiple nodes. This can happen synchronously, as
with most blockchains, or asynchronously, as seen in DAGs.

In pure voting based algorithms, each node communicates
its vote to all other nodes in the network to reach consensus
on one state change. Therefore, every round of voting requires
O(n) messages where n is the number of nodes in the system.
Because each node must acknowledge all votes received, a
single round of voting requires the communication of O(n?)
messages. When reaching consensus on something that re-
quires multiple rounds of voting such as the ordering of trans-
actions, the amount of messages required to be sent throughout
the network causes the system to be inefficient. Additionally,
the number of required messages grows exponentially as the
number of nodes in the system increases, making pure voting
based algorithms poor at scaling. For these reasons, pure
voting is never used as a consensus algorithm. However, voting
can be used in conjunction with other methods of reaching
consensus to greatly increase its scalability [18]. The following
are two categories of consensus algorithms that use voting to
ultimately agree on system state changes, but use additional
mechanisms to combat the major issues associated with pure
voting based algorithms:

1) Representative Voting: For the reasons listed above,
voting based consensus algorithms that require each node to
vote on the validity of every block are not typically practical



and scalable in large distributed environments. However, a
group of representatives may be elected as representatives
responsible for proposing blocks. To maintain a certain degree
of decentralization, the following conditions must apply: 1) All
nodes must be eligible to be elected as representatives 2) All
active nodes must participate in the election procedure 3) The
election procedure must be conducted periodically to avoid
centralization. Based on this definition, we identify the follow-
ing well-known consensus algorithms that fit this category.
Delegated Proof of Stake (DPoS): The Delegated Proof of
Stake algorithm was proposed and developed by Dan Larimer,
who implemented it in the EOS blockchain [30]. Slightly
different versions of DPoS are also implemented in BitShares
[31] and Steemit [32]. It is variant of the Proof of Stake (PoS)
consensus algorithm, in which participants stake an amount of
cryptocurrency in order to qualify as a candidate to produce
the next block.

The DPoS consensus algorithm creates a technological
democracy among [30] the participating nodes by creating
a group of block producers [32], who are designated with
the authority to propose new blocks. Users of the underlying
cryptocurrency with an account can register as voters [33] to
become stakeholders and vote for desired block producers. The
algorithm functions in two phases: election of block producers
and scheduling production of blocks [32]. The election process
is straightforward. Registered voters may login to the voting
portal and vote for a specific number of nodes, which is
typically higher than the fixed number of block producers.
For example, EOS has 21 block producers at any given time
and stakeholders may vote for as many as 30 nodes in a
session [33]. The 21 nodes with the highest number of votes
are elected as block producers. They are then responsible for
scheduling the production of blocks and receive a reward for
their services.

Since DPoS requires staking of underlying cryptocurrency
and rewards block producers for their services and good
behavior, it is most suitable for a cryptocurrency based public
network. DPoS is Byzantine Fault Tolerant and can withstand
upto 1/3(N) — 1 of malicious nodes, where N is the total
number of active nodes. Forks are possible with DPoS and
the longest chain rule applies. It implements Transaction as
Proof of Stake (TaPoS) [30] where all transactions include a
hash of most recent block and if the newly proposed block is
considered invalid if the hash of recent block doesn’t exist on
the longest chain. It is also resilient against attacks like Double
Spending and Network Fragmentation, and it can effectively
resolve troublesome scenarios like lack of quorum among
block producers and corruption of majority of block producers.
Practical Byzantine Fault Tolerance (PBFT): Lamport et
al. [34] proved that 2m + 1 properly functioning processors
are required to reach consensus in a system with m ill-
functioning processors. Liskov et. al. [35] designed the PBFT
mechanism to maintain consensus in a distributed computing
system functioning asynchronously. PBFT builds on Lamport’s
work by assuming that at least 2/3 + 1 nodes are required to
act non-maliciously for all the nodes to effectively reach an

agreement.

In PBFT implemented distributed systems, nodes do not
require a leader in the network and they can communicate with
each other. However, one node is considered as the primary
and the others are regarded as replicas. This property ensures
that there are no forks in the global state of ledger. PBFT
implements the state machine approach where transactions
lead to state transitions, a client must wait for f + 1 nodes to
reply with the same resulting transition to regard a transaction
as successful. In case the primary node fails to respond,
nodes communicate with each other to decide which node will
replace as primary and reach an agreement asynchronously
[35].

The non-changing position of the primary node makes

the PBFT algorithm extremely fast in comparison with other
consensus algorithms. PBFT also requires O(n*) [36] commu-
nication between nodes where n is the messages and k is the
number of nodes. This increases exponentially with addition
of new nodes to the network which is not scalable across large
network of nodes. Furthermore, PBFT is susceptible to sybil
attacks [36] where one entity controls many different nodes
with different identities. The possibility of carrying out a Sybil
attack becomes almost negligible in large distributed systems
with hundreds of nodes.
Hotstuff: Yin et al. proposed Hotstuff [17], a leader-based
PBFT variant consensus algorithm for distributed systems.
Hotstuff was the first partially synchronous BFT replication
protocol, so it exhibits a set of unique properties.

There are 2 basic changes to the traditional PBFT imple-
mented by Hotstuff [37]. First, the communication network
topology is transformed from a mesh network in PBFT to a star
network in Hotstuff. Each node no longer multicasts messages
to all nodes. Instead, they all communicate with each other
through the leader. This significantly reduces communication
complexity from O(n*) to O(n), where n is the number
of participating nodes. Secondly, Hotstuff combines the view
change phase with the normal operation, therefore decreasing
the overhead caused by view change phase. Nonetheless, this
leads to an extra phase of confirmation, expanding the two-
phase PBFT to three phases in Hotstuff. It also introduces a
new cryptographic primitive called threshold signature [17],
which is used to reduce the number of signatures used in
achieving consensus.

Hotstuff overcomes most of the limitations experienced in
traditional PBFT and is significantly more decentralized, given
that the view change occurs periodically. Like in PBFT, there
is no fork possibility in Hotstuff, but it is still susceptible to
Sybil attacks. It has not yet been tested on a public network
and would require strong integration with cryptocurrency to do
so. It may also be implemented in combination with Proof-
of-Stake with critical punishment mechanisms for malicious
behavior. Otherwise, we believe, Hotstuff is a scalable and
decentralized consensus algorithm that is secure only in a
partial trust environment like a permissioned/ private network.
LibraBFT: Implemented in the Libra blockchain [38] project,
LibraBFT [16] is a PBFT variant consensus algorithm that



builds on the above mentioned Hotstuff consensus algorithm.
It supports state machine replication based consensus in a “’par-
tially synchronous distributed systems”, defined by Dwork,
Lynch and Stockmeyer [39].

LibraBFT extends the concept of Hotstuff algorithm by
designing the protocol to be more resilient to non-determinism
bugs. This is achieved by making validators sign the resulting
state of each block collectively [38]. Furthermore, a pacemaker
[16] is designed that explicitly emits timeouts which enables
validators to proceed to the next round without the requirement
of a synchronized clock. The most important change was to
implement an unpredictable leader election mechanism where
the proposer of the latest block uses a verifiable random
function to elect the leader of the next round. This technique
limits the window of possibility for a Denial-of-Service attack
and randomizes the leader election process. LibraBFT replaces
the threshold signature concept with aggregate signatures to
reduce complexity and provide incentives the validators.

Like in PBFT and Hotstuff, LibraBFT is Byzantine fault
tolerant and secure only in a partial trust environment where
nodes are authorized to propose and validate blocks. LibraBFT
is resistant to Sybil attacks since nodes must be authorized by
an off-band process to be able to validate blocks. Hotstuff
consensus also avoids forking issue, which is also true for
LibraBFT due to core protocol adaption. However, LibraBFT
provides incentive to validators, a unique property that is not
implemented in Hotstuff or core PBFT. There is also the
3-chain commit rule [16] for persistence and replication of
data blocks. The block in round n is committed only if it is
confirmed by 2 more blocks at rounds n + 1 & n + 2 [38].
LibraBFT exhibits similar high latency and high throughput
transactions but sacrifices decentralization by enforcing au-
thorized validators.

2) Gossip Voting: Unlike pure voting and representative
voting, gossip voting is a voting mechanism with little com-
munication overhead in the network. This type of voting does
not require leaders, followers, or competitions to reach con-
sensus. Instead, it uses the gossip protocol, where every node
randomly picks a neighbor node and sends all the information
it knows to this node. This process repeats until, eventually,
all the nodes in the network will have the same information.
Additionally, every node will know where every other node
got their information from. For example, imagine there are
three nodes: Node 1, Node 2, and Node 3. If Node 1 and
Node 2 are neighbors and Node 2 and Node 3 are neighbors,
Node 3 will eventually know everything that Node 1 knows as
well as the fact that Node 2 got their information from Node
1. This historical record of the spread of information ensures
a fair ordering of transactions in the same way a blockchain
does without requiring consensus to be reached synchronously.
Thus, there is no need to have an explicit vote in order to reach
consensus. Instead, each node votes that a transaction is valid
once it sends the information about the transaction and where
it came from to another node. Therefore, the number of votes
a transaction has is the number of times it has been sent from
one node to another. all other nodes and it needs to confirm the

received messages. In the gossip voting nodes don’t have to
send any messages, nodes can deduce what other nodes voted
because they already send what they know.

Due to gossip voting’s asynchronous and non-linear design,
it is not suited for use with a blockchain data structure. Instead,
this type of voting is done using DAGs. DAGs allow several
different chains of transactions to exist simultaneously, which
works well with gossip voting’s tree-like structure. Despite
their differences, though, both DAGs and blockchains are
immutable, so there are not many security sacrifices associated
with using a DAG as opposed to using a blockchain [18],
[40]. The following are examples of gossip voting consensus
algorithms, all of which are implemented using DAGs:
Swirlds Hashgraph: Developed by Leemon Baird in 2016
[18], Hashgraph was one of the first gossip voting algorithms
to be implemented using a DAG. In Hashgraph, nodes send
transactions randomly to other nodes in the network. Every
time a node receives a transaction from another node, they
create an event that records everything in the transaction.
Additionally, the hash of both nodes’ last event is recorded
in the new event along with any new information that the
receiving node wants to include along with the receiving
node’s digital signature and the timestamp. Over time, this
builds a ledger of events in which events are linked by the
hashes included when the event was created. Each node has
a copy of this ledger, which may differ slightly from other
nodes’ ledgers if new gossip has not reached it, but after a
certain point all the ledgers will be identical. Because of this,
consensus can be determined by any node in the network;
all nodes know almost everything that all other nodes know,
so they how a node would vote if they were asked. This
allows each node to be able to simulate elections through
what is called virtual voting. It is called this because there
is no communication happening during the voting process;
it is all simulated by the individual node. This drastically
reduces latency and communication overhead, which is one
of Hashgraph’s greatest strengths [18].

Tangle: IOTA [40] uses a similar consensus approach to
Hashgraph with its gossip voting protocol Tangle [41]. IOTA
developers implemented Tangle in 2015 to provide cryptocur-
rency for the internet of things systems without requiring
competition or high overhead. In IOTA, transactions are called
sites and links between two transactions are called edges. A
transaction in Tangle must have edges to at least two other
transactions in order to considered confirmed; if they have less
than two edges, they are unconfirmed transactions, also called
tips of the Tangle. When a new transaction is added, a Markov
chain Monte Carlo algorithm is used to randomly select two
or more tips of the Tangle to attach the new transaction to
[41]. This means that every added transaction confirms two
other transactions, which makes IOTA’s Tangle scalable; the
network does not slow down when there are a lot of new
transactions. Tangle currently uses the help of PoW to reach
consensus. When a node creates a new transaction, it does a
small amount of PoW to determine the transaction’s weight.
When the transaction is added and becomes a site, its weight
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represents how trustworthy it is. As the site gets confirmed
by more sites, it’s the confirming site’s weight is added to the
confirmed site’s weight. Thus, the more a site is confirmed,
the more trustworthy it will be [40].

IV. DETERMINATION OF EACH CATEGORY’S PRIORITIES

According to Vitalik Buterin’s “Scalability Trilemma” [42],
there are three qualities that every distributed system should
strive to achieve: scalability, security, and decentralization. For
a distributed system to be scalable, it must easily expand as
the network grows without requiring excessive amounts of
storage, even as the number of active nodes and transactions
gets large. A distributed system is secure if it is fair, consistent,
and available even under adverse conditions. Finally, there are
two aspects of decentralization that a distributed system must
satisfy in order to be fully decentralized [43]. First, it must
consist of many individual nodes, and be able to handle some
number of them being down at one time. Second, these nodes
must not be owned by a relatively small number of individuals
or organizations.

Although distributed systems are typically designed with
these qualities in mind, this is a choose-two tradeoff. Thus,
every consensus algorithm is designed to prioritize two of the
three qualities. Figure 2 illustrates which two qualities are
prioritized by each of our categories. Choosing which two
qualities to prioritize is an important decision that depends on
the specific application that the consensus algorithm will be
used for. The benefits, drawbacks, and use cases for each of
the categories in Section 3, relative to the three qualities listed
above, are as follows:

A. Scalable and Secure

Representative Voting-Based Algorithms: As described in
Sec-1II-B1, the representative voting based consensus requires

a subset of the total participating nodes to be delegated or
authorized to propose blocks, therefore, reducing the computa-
tion and communication complexity to O(r) involved in voting
for new blocks, where » C N (Total number of participating
nodes). This mechanism is more scalable than allowing all N
participating nodes to be involved in block proposal procedure.

The Representative Voting-based algorithms are compara-
tively secure because the representatives are either delegated
by a voting procedure (as in DPoS), or they are authorized
by an off-band process (as in LibraBFT). As long as the
delegation or authorization process remains secure, the repre-
sentatives are trustworthy and non-malicious. Good behavior is
also incentivized in the case of LibraBFT, which also means
that there is punishment if malicious behaviour is detected.
This will keep the validators motivated to order transactions
appropriately and reach consensus as quickly as possible.

By selecting a subset of nodes to be authorized or delegated,
naturally, this type of consensus algorithm trades decentral-
ization for security and scalability. And as observed in such
consensus algorithms, this results in high throughput and low
latency of transactions.

Use Cases: Such consensus algorithms are best if used in
a partial trust environment, which is also recommended by
their authors. Partial trust environment may be implemented
by access control and centralized authorization of validators,
as observed in LibraBFT. Decentralized voting based autho-
rization may also result in a partial trust environment, like in
DPoS, this voting procedure, however, must be distinguishable
from on-chain voting conducted on block proposals. Repre-
sentative voting-based consensus algorithms are the best fit
for distributed computing systems where high scalability can
be prioritized over maximum decentralization.

Collaborative Leader Selection Algorithms: Because com-
petition occurs relatively infrequently in collaborative leader
selection algorithms, and because all followers must replicate
any information broadcast by the leader, these algorithms are
not under the risk of majority attacks or forking. Furthermore,
consistency is guaranteed for the same reason; if there is
ever an inconsistency, the leader will delete information and
broadcast the updated set of information to be replicated by
the followers until the inconsistency is resolved. Because a
new leader is quickly elected if the leader is unavailable, col-
laborative leader selection algorithms are crash fault tolerant.
This quality guarantees that the system will not fail as long
as a majority of the nodes are available. In the event of an
unavailable leader, all followers have an equal chance of being
selected as the new leader, which guarantees that the algorithm
is fair. Together, the availability, consistency, and fairness that
characterize collaborative leader selection algorithms make
them secure.

Because all followers must have identical sets of informa-
tion, it can be assumed that information broadcast by the leader
was successfully replicated in all nodes once a majority of
followers confirm their replication. This contributes greatly
to the scalability of collaborative leader selection algorithms;
there is no need to wait for the response of every follower,



so consensus can be reached even if some followers crash or
experience network latency. While the number of responses
needed to consider the replication successful will increase as
the number of nodes in the network increases, the performance
of the system will see negligible penalties as long as over
half of all nodes are acting correctly due to the low overhead
that follower messages incur. It is possible for the information
set stored by each node to get large if the system runs for
a long time or if there are a large number of transactions.
This has the potential to limit the system’s scalability if the
information set becomes too large to feasibly store. However,
mechanisms such as snapshotting, which periodically saves
the entire information set to stable storage and clears each
nodes information set, exist in all common collaborative leader
selection algorithms to prevent such scalability limitations
from occurring [29].

It is important to note that these security and scalability
guarantees are contingent on all of the nodes acting in a non-
Byzantine way, meaning they must all be trusted to not act ma-
liciously. Collaborative leader selection algorithms are crash
tolerant, so they can handle network delays and server crashes,
but they are not Byzantine fault tolerant, which means they
cannot handle malicious behavior. Because these algorithms
require trust to function properly, there must be some central
authority that determines which nodes can be trusted. Thus,
collaborative leader selection algorithms are not decentralized.
Instead, these algorithms sacrifice decentralization to prioritize
security and scalability.

Use Cases: Because the leader is always assumed to be correct
and any node can become the leader, collaborative leader
selection algorithms require the higher amount of trust than
any other type of algorithm in order to function properly.
Therefore, this type of algorithm should only be used in
private, permissioned systems where the identity and trust-
worthiness of each node can be verified. For closed systems
where the sole purpose is to securely and quickly store infor-
mation, the relative simplicity and low resource cost of these
algorithms make them an attractive option. Similarly, systems
that are trusted but unstable would benefit from the crash fault
tolerance and fast leader election that these algorithms provide.

B. Secure and Decentralized

Competitive Leader Selection Algorithms: Because any
node can compete to be selected as the next leader, algorithms
that feature competitive leader selection are considered to be
highly decentralized. There is no need for a central authority
because it is easy for any node to prove that they were selected
to create the next block. This ensures that every node has a
chance to compete to become the leader and earn a reward,
and that the network will not necessarily crash if a small
number of nodes fail. However, participants will always do
whatever they can to increase their likelihood of winning the
competition so they can earn more reward. As a blockchain
grows in popularity, certain users will invest more to ensure
they have the highest chance of being selected. This can result
in a barrier of entry that is too high for the average user,

which means the blockchain has the possibility to become
more centralized as it becomes more popular [44].

To ensure security, most competitive leader selection algo-
rithms have a fixed block creation rate, meaning the difficulty
of winning the competition and being elected as the leader is
proportional to the number of nodes competing. This prevents
mass cryptocurrency inflation as well as majority attacks
like the 51% attack [45]. As long as the network remains
synchronized, competitive leader selection algorithms are 50%
fault tolerant, meaning the security of the blockchain will
remain intact as long as less than half of all nodes are acting
maliciously [46].

As stated above, for a blockchain to be scalable, it must

be able to handle a high number of transactions in a small
amount of time. This means that, as more nodes enter the
network, blocks need to be either created more quickly or
become larger in size. However, neither of these are easily
done in competitive leader selection algorithms. Competitive
leader selection algorithms must keep the block creation rate
fixed in order to prevent majority attacks and other malicious
behavior. If the block creation rate is fixed, the block size will
have to increase as the number of nodes increases. This is
a problem because each node must have their own copy of
the blockchain so they can mine the next block and validate
blocks broadcast by other nodes. As the block size grows, the
amount of storage required to store the entire blockchain grows
exponentially, making it impossible for the average user to
compete to become the next block creator and compromising
decentralization. Therefore, it is impossible for blockchains
using competitive leader selection algorithms to be scalable
without compromising security or decentralization.
Use Cases: Because of their emphasis on decentralization and
security, competitive leader selection algorithms are the best
choice in a trustless environment such as a public blockchain.
The qualities listed above ensure that the network is fair for all
nodes, and that each node has the ability to participate and earn
rewards. Similarly, competitive leader selection algorithms
are the best choice for any blockchain with an associated
cryptocurrency.

C. Decentralized and Scalable

Gossip Voting-Based Algorithms: There are several charac-
teristics of gossip voting algorithms that make them far more
scalable than other consensus algorithms. The use of DAGs
instead of blockchains allows transactions to be confirmed
quickly and asynchronously. Similarly, because transactions
are linked to other transactions, gossip voting algorithms can
predict how any given node will vote, so voting can happen
locally [18], [40]. This greatly reduces communication over-
head and network latency. Because the transactions in these
protocols are small and not grouped together, there is no risk
of storage requirements limiting scalability. Decentralization
is also maintained because transactions are verified by other
nodes in the network. There is no need for a central authority
because, as more transactions are added, the system becomes
inherently more secure. Some gossip voting algorithms have



used centralized nodes to bootstrap their networks [41], but
most aim to have a fully decentralized system once it becomes
large enough. In short, the more participants a gossip voting
algorithm has, the faster and more secure it will be. This makes
systems using gossip voting more scalable than the average
blockchain while maintaining decentralization [18], [40].
However, systems that uses the gossip voting are susceptible
to Sybil attacks [36], in which one entity controls many
different nodes with different identities. In gossip voting
algorithms, there is not yet a solution to this problem without
compromising decentralization or scalability.
Use Cases: Because the communications between the nodes is
fast and light overhead then this category is applicable for the
applications that has a private permissioned network where the
nodes need to communicate with each other in the fastest and
cheapest way possible, and maintain a ledger for keeping track
of their transactions. Systems with limited storage capacity and
processing power, such as 0T systems, would benefit from the
use of this type of consensus algorithm.

V. CONCLUSION

In this paper, we described a novel classification for com-
mon consensus algorithms based on how they decide the order
of system state changes. Figure 1 offered a classification of
consensus algorithms for distributed ledgers while Figure 2
showed a prioritization (tradeoffs) of the consensus algorithms.
We determined the extent to which each category prioritizes
scalability, decentralization, and security. We found that, as
is common with other engineering design scenarios, that a
choose-two tradeoff results among these three concerns. And,
based on this taxonomy of tradeoffs, we were able to discern
the types of consensus algorithms that work well within the ap-
plication area(s) for a given distributed system. We found that
a dichotomy of algorithms between leader-based and voting-
based consensus algorithms emerged from this taxonomy. We
presented certain applications under this classification scheme
including several different categories of distributed ledgers
such as blockchains and Directed Acyclic Graphs (DAGS).
Overall, this classification scheme provides a useful basis for
determining the appropriate consensus algorithms for a variety
of distributed applications.
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