
University of Tennessee at Chattanooga University of Tennessee at Chattanooga

UTC Scholar UTC Scholar

Honors Theses Student Research, Creative Works, and
Publications

5-2021

Simplifying the creation of virtual topologies using MPI Sessions Simplifying the creation of virtual topologies using MPI Sessions

Tom Herschberg
University of Tennessee at Chattanooga, tom-herschberg@utc.edu

Follow this and additional works at: https://scholar.utc.edu/honors-theses

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Herschberg, Tom, "Simplifying the creation of virtual topologies using MPI Sessions" (2021). Honors
Theses.

This Theses is brought to you for free and open access by the Student Research, Creative Works, and Publications
at UTC Scholar. It has been accepted for inclusion in Honors Theses by an authorized administrator of UTC Scholar.
For more information, please contact scholar@utc.edu.

https://scholar.utc.edu/
https://scholar.utc.edu/honors-theses
https://scholar.utc.edu/student-research
https://scholar.utc.edu/student-research
https://scholar.utc.edu/honors-theses?utm_source=scholar.utc.edu%2Fhonors-theses%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholar.utc.edu%2Fhonors-theses%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.utc.edu/honors-theses/334?utm_source=scholar.utc.edu%2Fhonors-theses%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@utc.edu

Simplifying the Creation of Virtual Topologies

Using MPI Sessions

by

Tom Herschberg

Departmental Honors Thesis
The University of Tennessee at Chattanooga

Department of Computer Science

Examination Date: April 8th, 2021

Anthony Skjellum Eleni Panagiotou
Professor of Computer Science Assistant Professor of Mathematics
(Chair) (Committee Member)

ABSTRACT

As supercomputers have approached exascale performance, several scalability issues have

emerged within MPI. These issues arise because MPI includes all processes in the World model,

which consumes unacceptable amounts of time and resources at large scale. The Sessions model

was developed to combat these issues by removing the requirement of MPI COMM WORLD,

which provides a more scalable method of creating communication groups in large jobs.

Additionally, the Sessions model enables the creation of virtual topologies directly from sets of

processes allocated to the execution of a parallel application rather than building virtual topologies

from an existing communication group such as MPI COMM WORLD.

For this project, I implemented the Sessions model in ExaMPI, an MPI implementation

designed for modularity, extensibility, and understandability. I also created topological variations

of several common communication algorithms and topological connection building to further take

advantage of the benefits of the Sessions model. I found that using the Sessions model reduces the

time and resources used when a large parallel application begins executing. Additionally, I found

that using topological connection building and topological communication algorithms is faster than

traditional all-to-all connection building in certain situations.

ii

ACKNOWLEDGMENTS

First, I thank my thesis director Dr. Tony Skjellum for his continued mentorship and

expertise throughout my time as a researcher at UTC. I also thank Dr. Eleni Panagiotou for

providing many of the research skills I needed to complete this thesis. I owe many thanks to

Derek Schafer, whose knowledge of C++ and ExaMPI made this thesis possible. Finally, I owe

gratitude to Dr. Howard Pritchard for his advice on implementation details and testing.

I acknowledge funding received from the Research Experience for Undergraduates (REU)

program through supplements to NSF funding at the University of Tennessee at Chattanooga, under

grants # 1822191, 1821926, 1821431, and DMS-1913180.

iii

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

1. INTRODUCTION . 1

1.1 Outline . 2

2. BACKGROUND AND MOTIVATION . 3

2.1 Background . 3
2.1.1 Initialization . 3
2.1.2 Communicator and Group Creation . 4

2.2 Motivation . 5

3. IMPLEMENTATION . 6

3.1 Implementing the MPI Sessions API . 6
3.2 Changes to the Runtime System . 7
3.3 Dynamic Initialization . 8
3.4 Topological Connection Building . 8
3.5 Topological Communication Algorithms . 9

4. EVALUATION . 11

4.1 Experimental Setup . 11
4.2 Results . 11

4.2.1 Initialization Time . 12
4.2.2 MPI Function Execution Time . 14

5. CONCLUSION . 19

5.1 Discussion of Results . 19
5.2 Limitations . 20
5.3 Future Work . 21

iv

REFERENCES . 23

APPENDICES

A. GRAPHS . 25

B. BENCHMARKS . 63

v

CHAPTER 1

INTRODUCTION

The Message Passing Interface (MPI) is currently the de facto standard for communication

between peer groups of processes in a parallel program [7]. MPI’s governing body, the MPI

Forum, works diligently to ensure that every new version of MPI is backwards compatible

to prevent older applications from breaking after an update. This backwards compatibility

requirement, however, has contributed to numerous scalability problems as the high performance

computing industry has evolved. As supercomputers continue to approach exascale (one quintillion

calculations per second), it is becoming increasingly important to resolve the scalability issues

facing MPI. Specifically, one of the largest problems currently facing MPI is handling the massive

process spaces of the largest supercomputers. It is not uncommon for some applications to

use millions of processes during execution. This becomes difficult for MPI to handle because,

when MPI is initialized, every single process must be initialized to a single communicator called

MPI COMM WORLD, which enables communication between each node. Because the process

space is so large, creating MPI COMM WORLD is often unacceptably time- and resource-

intensive. What is more, communication has substantial structure, so that all processes do not

communicate with each other, but rather only in sparse, topological subsets/subgraphs that are

application, algorithm, and collective-communication dependent.

One recently proposed solution to this problem is the concept of MPI Sessions [6].

MPI Sessions removes the requirement of initializing all processes to MPI COMM WORLD

by allowing the creation of communicators using different groups of processes provided to the

application by the runtime system. This enables the creation of multiple MPI environments, each of

which can be customized and optimized to a much finer degree than previously possible. Because

1

it relaxes the requirement for global initialization, MPI Sessions can enable the use of sparser

connection building. Building connections in the shape of a sparse virtual topology, such as a

ring, uses far less resources than building connections between all processes in a job and is much

more scalable than the current method of building connections. By removing the requirement for a

global communicator and connections between all processes, MPI Sessions makes the process of

creating efficient, scalable communicators much more straightforward. The purpose of this work

is to show the benefits of leveraging the relaxed global requirements of MPI Sessions to create

scalable, sparse communication patterns within MPI applications.

1.1 Outline

The remainder of this thesis is structured as follows: Chapter 2 provides background on the

Sessions model, as well as the motivation for this project. Chapter 3 describes the modifications

made to ExaMPI in order to support the Sessions model and topological communication patterns.

Chapter 4 presents performance results for the Sessions model compared to the traditional

MPI COMM WORLD model. Finally, Chapter 5 concludes the project and outlines future work.

2

CHAPTER 2

BACKGROUND AND MOTIVATION

2.1 Background

The MPI Sessions model provides several API additions that address some of the emergent

problems in the current MPI Standard. To aid in understanding the concepts present later in this

thesis, the key API additions are outlined in the following subsections. For simplicity, the current

state of the MPI API will be referred to as the World model, while the additions to the API will be

referred to as the Sessions model.1

2.1.1 Initialization

One of the largest differences between the World model and the Sessions model is how

they are initialized. In the World model, each process must initialize the MPI library by calling

the function MPI Init() and finalize the MPI library by calling the function MPI Finalize()

exactly once. Additionally, all other MPI functions must be called after MPI Init() and

before MPI Finalize(). The World model does not provide a mechanism for reinitializing MPI

once MPI Finalize() has been called. When MPI Init() is called, every process is added to

a communication object—a communicator—called MPI COMM WORLD, which can require

massive amounts of memory if there is a large number of processes (a world group). The

Sessions model addresses this issue by eliminating the creation of global state upon initialization.

Instead, it uses a local handle to the MPI library called an MPI Session. Once a process

creates an MPI Session using the MPI Session init() function, it uses that MPI Session as

1This nomenclature has become common parlance in the MPI Forum.

3

an independent handle to the MPI library in order to call other MPI functions. Unlike the

World model, communicator creation is not done upon initialization, which reduces startup

overhead. Once a process is finished with a given MPI Session, it will destroy the session using

MPI Session finalize(). Because each MPI Session is an independent local handle to the MPI

library, a process can have several MPI Sessions active at the same time, which is impossible in

the World model. The Session model also allows for MPI Session init() to be called at any point

in an application’s execution, allowing for MPI Session objects to be created even after all other

MPI Session objects have been finalized and destroyed.

2.1.2 Communicator and Group Creation

The MPI Standard outlines two objects that are designed to group processes together.

An MPI Group is an ordered set of processes that each have a unique rank. This association

is purely local and the creation of MPI Groups does not require any communication between

different processes. An MPI Comm, on the other hand, is an object created collectively between

all members of a given MPI Group that facilitates communication between the members of that

MPI Group. Any communication between processes in an MPI application must be done using an

MPI Comm, a communicator. This is the reason for the creation of MPI COMM WORLD, which is

an MPI Comm, upon initialization in the World model. Because MPI COMM WORLD contains

all processes, any process can easily communicate with any other process and build smaller

MPI Comms if desired. However, because creating an MPI Comm requires a collective operation

(non-local and synchronizing) on all processes in that communicator, they are relatively expensive

to create and store at large scale. The Sessions model addresses this by changing the process

of creating MPI Comms. Rather than creating MPI COMM WORLD first and then building down

like in the World model, the Sessions model builds up from an MPI Group to an MPI Comm. To

do this, the Sessions model introduces the concept of process sets, which are ordered sets of

processes similar to MPI Groups but are discovered by querying the underlying runtime system.

Each process can query the runtime system for the number of available process sets using the

MPI Session get num psets() function, then get the name of the nth process set by calling the

4

MPI Session get nth pset() function. Process set names follow the Uniform Resource Identifier

(URI) format. There are two process sets that must always be available: mpi://WORLD, which is

an ordered set of all processes, and mpi://SELF. Once the name of a process set has been obtained,

the MPI Group from session pset() function can be used to create an MPI Group that matches the

process set that was passed into the function. From there, the MPI Comm create from group()

function can be used to create an MPI Comm for the given MPI Group. By building up from process

sets rather than building down from MPI COMM WORLD, the Sessions model is able to avoid the

overhead associated with creating a very large MPI Comm when such an MPI Comm is not required

for the application. If MPI COMM WORLD is required, the Sessions model can still create it

using the mpi://WORLD process set, making it compatible with the World model.

2.2 Motivation

While the benefits of MPI Sessions have been theorized, there is currently little opportunity

to experiment and gather results using the Sessions model. No MPI middleware has implemented

the MPI Sessions API, and only one, Open MPI, has a functioning prototype [5]. However, Open

MPI is a production-grade middleware product, and has been optimized to such a degree that

it is difficult to introduce new concepts without requiring significant changes to the code base.

For this reason, MPI Sessions has not yet been proven to provide any performance benefits. In

order to demonstrate the value of MPI Sessions, it needs to be implemented in a readable and

extendable way. This would allow for the functionalities of MPI Sessions to be taken advantage

of by other concepts designed to increase the performance of MPI applications. For example,

removing the requirement of a global communicator enables the use of sparser virtual topologies

from the beginning of an application, which reduces startup overheard. Such performance benefits

are impossible to measure until MPI Sessions can be leveraged by other performance-saving

concepts. Therefore, to observe the value of MPI Sessions, it needed to be implemented in a way

that facilitated experimentation. The purpose of this work is to provide such an implementation of

the MPI Sessions API, and to augment it with topological connection building and communication

algorithms to improve the performance of MPI applications.

5

CHAPTER 3

IMPLEMENTATION

When doing MPI research, it is important to select the right MPI implementation to modify

since it takes time to get familiar with the architecture. MPI implementations are notoriously

dense and difficult to read, so choosing the correct implementation to work with at the beginning

of a research project is an important step in finishing that project in time. For this reason, I did

not choose an production-grade MPI implementation such as Open MPI [3] or MPICH [4]. These

implementations focus on high performance (plus simultaneous implementation portability), which

means they have gone through many iterations and have many interacting components that have

been fine-tuned to work a specific way. Because the changes required by the Sessions model are

large, fitting them into such an optimized implementation would take too much time. Instead,

I chose to modify ExaMPI, which is an MPI implementation designed to be research friendly

[9]. This allowed me to rapidly experiment with new ideas without getting bogged down in the

implementation details. The following sections address the changes I made to various parts of

ExaMPI’s architecture.

3.1 Implementing the MPI Sessions API

The most important change to ExaMPI accomplished in this project was the addition of

the complete set of functions required of any MPI Sessions implementation by the MPI Standard

[8]. Further, all functions adhere to the requirements put forth by the MPI Standard to ensure

that they function correctly. For example, the MPI Session init() method was written to be a

local function rather than a global function such as MPI Init(). Two process sets, mpi://WORLD

and mpi://SELF, are mandated by the MPI Standard as well, so additional code was written to

6

create these process sets at runtime and provide them to each process within an MPI application.

The MPI Session get num psets() and MPI Session get nth pset() methods were added to enable

the selection of process sets within an MPI application, and the MPI Group from session pset()

method was added to enable the creation of MPI Groups from process sets. Finally, the

MPI Comm create from group() method was added to enable the creation of an MPI Comm from an

MPI Group without a parent communicator. The internal structures of MPI Group and MPI Comm

objects in ExaMPI were not modified.

3.2 Changes to the Runtime System

ExaMPI uses the mpiexec command to launch MPI applications. These commands

save information about the runtime environment into environment variables and then spawn a

subprocess for the actual application to execute from. For several reasons, this approach needed to

be modified in order to support the Sessions model. The mpiexec command needed to be modified

to accept process set names as command line arguments. Additionally, because the Sessions model

allows for multiple sessions to run through one call to mpiexec, logic had to be added to enable

the execution of multiple applications with varying amounts of process counts from the same job

submission. Each session must be independent, so information regarding which process belongs

to which session needed to be stored in environment variables for later use by ExaMPI. This

information is used to ensure that processes in different sessions are unable to build connections

to each other. Another change needed was to make mpiexec spawn a separate subprocess for

each application associated with a given job submission rather than spawning a single subprocess

for the entire job. By isolating each subprocess, any unwanted dependencies between sessions is

prevented. No changes to ExaMPI’s runtime daemons were necessary. Finally, a flag was added

to mpiexec to enable the user to choose which internal communication topology to use at runtime.

Users can include the --use ring flag in their mpiexec call to tell ExaMPI to build connections

in a ring pattern rather than an all-to-all pattern. This is discussed further in Section 3.4.

7

3.3 Dynamic Initialization

The Sessions model allows for multiple MPI Sessions to be created and finalized at

any point during the execution of an MPI application. To enable this capability, ExaMPI

had to be modified to support dynamic initialization. This was done by creating a global

variable to keep track of the number of active MPI Sessions within a given application. When

MPI Init() or MPI Session init() is called, this variable is incremented. When MPI Finalize()

or MPI Session finalize() is called, the variable is decremented, and if the value is 0 after this

decrement, ExaMPI performs its normal finalization and teardown functions and the application

stops executing. Without this change, ExaMPI would finalize and cease execution as soon as

one MPI Session called MPI Session finalize(), causing all other active MPI Sessions to be

destroyed erroneously. Importantly, this approach maintains compatibility with the World model

method of initialization and finalization, MPI Init() and MPI Finalize(), so as to ensure backwards

compatibility with MPI applications written for the World model.

3.4 Topological Connection Building

The transport layer in ExaMPI was designed to enable the abstraction of network APIs.

This is done through a Transport class, which is responsible for handling any memory associated

with the network. The most common transport used by ExaMPI is the TCP transport, but the

way it was implemented posed some problems for this project. The first problem is that the TCP

transport was designed with MPI COMM WORLD in mind, which means each process is assumed

to be able to connect to any other process. However, in the Sessions model, processes in different

MPI Sessions are not permitted to communicate with each other because each MPI Session is

an independent handle to the MPI library. Another issue with the TCP transport is that connections

between all processes are established when MPI is initialized. This means that, even when using the

Sessions model, the TCP transport builds all of the connections needed for MPI COMM WORLD,

which makes it impossible to reduce the startup overhead when running large MPI applications.

For these reasons, a new Transport class was created and designed with the Sessions model

8

in mind. This new transport, called TCPSessions, uses information from the runtime system

to build connections only between processes in the same MPI Session. Additionally, in order

to take advantage of the performance benefits of using topological communication patterns, the

TCPSessions transport only builds connections to the ranks immediately above and below a given

process. This significantly reduces the cost of initializing the transport, since each process only

has to build two connections rather than connecting to all other processes in the job. This approach

did present its own challenges, though. TCP does not have a way to forward a message to another

host, so it would be impossible for a process to send a message to a process with rank that is

not immediately above or below it. Therefore, a message forwarding protocol was added to the

TCPSessions transport.

3.5 Topological Communication Algorithms

Having fewer connections when using the TCPSessions transport caused other problems

within ExaMPI as well. Specifically, all of the communication algorithms used to send data

between processes were designed under the World model. For example, the MPI Reduce() function

takes input elements from each process and returns output elements to a root process. In ExaMPI,

this is done by having the root process receive from all other processes1, and having all other

processes send to the root process. When using the TCP transport, this works as intended because

all processes have connection information for all other processes. When using the TCPSessions

transport, though, this implementation fails above a certain number of processes. If a job with four

processes tries to do an MPI Reduce() with root=0 using the TCPSessions transport, process 2 will

not be able to send its information to process 0 because it only built connections to process 1 and

process 3, the ranks immediately above and below it. Therefore, new communication algorithms

had to be designed to be compatible with topological connection building. In the topological

version of MPI Reduce(), the root process only receives from the process below it, the process

above the root process only sends to the process above it, and all other processes receive from the

1Tree-based reduction algorithms are being made standard in a forthcoming release of ExaMPI.

9

process below it and send to the process above it. Because each process only sends to and receives

from its immediate neighbors, the connections built by the TCPSessions transport are sufficient.

For this project, I created topological versions of the MPI Reduce(), MPI Gather(),

MPI Scatter(), and MPI Bcast() functions. I chose to implement these functions because most

other communication algorithms, such as MPI Allreduce() and MPI Allgather(), can be done as a

combination of topological communication algorithms that have already been implemented.

10

CHAPTER 4

EVALUATION

In order to evaluate the changes and additions made to ExaMPI during this project, micro-

benchmarks were developed for several different MPI functions. These tests provided timing

results for the original TCP transport as well as the new TCPSessions transport so that the two

transports could be compared in terms of efficiency.

4.1 Experimental Setup

The results in this section were gathered using ExaMPI’s develop branch at SHA af5b88f

for the World model and ExaMPI’s feat-sessions branch at SHA a341497 for the Sessions model.

Data was collected on a single node running CentOS Linux 7 with two AMD EPYC 7662 64-Core

processors and 512 GB of memory. The data was gathered during normal operating hours, so the

node was addressing other workloads alongside but isolated from the data collecting runs for this

project.

4.2 Results

The following subsections compare the TCP transport, which uses all-to-all connection

building, to the TCPSessions transport, which uses ring connection building where each process

connects to the process immediately above and below it in the rank order. Note that the plots for

the TCP transport only provide data for up to 32 processes, while the plots for the TCPSessions

transport provides data for up to 128 processes. By building fewer connections at startup, ExaMPI

is able to handle many more processes during initialization when using the TCPSessions transport.

11

Figure 4.1 Average initialization time of TCP transport vs TCPSessions transport

4.2.1 Initialization Time

By far, the largest benefit of using the TCPSessions transport over the TCP transport is

initialization time. This is because a large portion of initialization time in ExaMPI is spent building

connections. Since the TCPSessions transport builds far fewer connections than the TCP transport,

it is able to complete its setup much faster. MPI initialization times were collected by measuring

execution time of MPI Init() for both transports using a small initialization benchmark program

written for this project. This benchmark was run 100 times per transport at increasing numbers of

processes, with the results being averaged and plotted as depicted in Figure 4.1. The source code

for this timing benchmark can be found in Appendix B.

Not only can the TCPSessions transport handle far more concurrent processes than the TCP

transport, it can also initialize those processes much faster. The large difference in initialization

time occurs due to the way connection building is done in ExaMPI. ExaMPI uses a static triangular

12

connection building pattern, which means each process must perform three socket calls for each

other process in the allocation. A description of the connection building algorithm in ExaMPI is

shown in Algorithm 1.

Algorithm 1 Static Triangular Connection Building

1: for rank = 0, . . . ,my rank−1 do
2: Attempt to connect with rank
3: Send my rank to rank
4: end for
5: for rank = my rank+1, . . . ,num ranks−1 do
6: Accept connection from rank
7: Receive their rank from rank
8: end for

Because socket calls are relatively expensive operations, connection building can cause

initialization time to become unacceptably slow at higher process counts. The sending and

receiving of ranks in Algorithm 1 is required because the order in which connection requests

are sent and received is not guaranteed. Therefore, each process needs to know the rank of the

process with which it just connected. Connection building in the TCPSessions transport addresses

several of the shortcomings in the static triangular connection building method. First, because each

process only connects with its nearest neighbors in the rank order, there are far fewer necessary

socket calls. Additionally, since each process always has only two neighbors, the number of

connections required for each process remains constant rather than growing linearly. Therefore, the

total number of connections required for the application grows linearly in relation to the number of

processes in the TCPSessions transport, whereas the total number of connections required grows

quadratically in the TCP transport. More specifically, the total number of connections CN required

by the TCP transport is shown in Equation 4.1.

CN = (N −1)+(N −1)+ . . .+(N −1),

CN = N(N −1).
(4.1)

The total number of connections CN required by the TCPSessions transport is shown in Equation

4.2.

13

CN = (2)+(2)+ . . .+(2)

CN = 2N
(4.2)

For example, an application with 128 processes would require 128× 127, or 16,256 connections

using the TCP transport but would only require 2×128, or 256 connections using the TCPSessions

transport [2].

Finally, because the ranks of a process’s neighbors are always known, the additional send

and receive needed to obtain the connecting process’s rank is not required, meaning each process

must only perform two socket calls. These improvements are what contribute the most to the

significant drop in initialization overhead when using the TCPSessions transport.

4.2.2 MPI Function Execution Time

Additional benchmark programs were written to measure the execution time of the

MPI Bcast() and MPI Gather() functions using the TCP and TCPSessions transport. The source

code for these benchmarks can be found in Appendix B. To minimize external contributions to

the timing results, the persistent variants of these communication algorithms were used. These

functions were run with buffer sizes of 1, 100, and 1000 integers to get a better picture of

the two transports’ performance with different message sizes. In addition to the varying buffer

sizes, several different internal communication algorithms were tested. Specifically, three different

algorithms were used with each transport in order to compare the performance of the transports

when using different internal communication topologies: linear, ring, and binomial. Figure 4.2

illustrates the three communication algorithms performing a simple gather collective operation

with eight processes.

To obtain the results, both transports were tested with all three types of communication

algorithm at all three buffer sizes. Each of the possible combinations were run 100 times

at increasing numbers of processes, with the first five runs being discarded to allow the

communication paths to “warm up.” The average and maximum execution time were then

14

aggregated and plotted. A demonstrative example is shown in Figure 4.3; the rest of the plots

can be found in Appendix A.

Figure 4.3 shows the typical differences between the TCP and TCPSessions transports.

The TCPSessions transport has more variance resulting from the ring structure of the internal

connections. If a process tries to send a message to another process that is not one of its

neighbors in the rank order, that message must be forwarded along the connection ring until it

reaches its original destination. Therefore, if any process is experiencing slowdown, it is likely

going to affect the entire execution and cause variations in the final execution time. Since every

process has connection information for every other process when using the TCP transport, the

TCP transport is not subject to forwarding slowdowns and thus has less variance. This difference,

along with the natural variation associated with running benchmarks without exclusive access to

the system, account for an average execution time that is about 0.0001 seconds slower when using

the TCPSessions transport.

For the sake of brevity, each combination of transport, buffer size, and communication

algorithm will not be discussed at length. Instead, Table 4.1 contains a brief comparison between

the TCP and TCPSessions transports for each combination. All comparisons are done at 32

processes because that is the maximum number of processes that the TCP transport can consistently

handle1. The table is structured as follows: Algorithm Type describes the internal communication

topology used by ExaMPI, MPI Function describes the operation being performed, Buffer Size is

the number of elements being passed to the MPI function, Faster Avg lists which transport had

the faster average execution time, the first % Diff is the percent difference between the average

execution times of the two transports, Higher Max lists which transport had the highest maximum

execution time, and the second % Diff represents the percent difference between the maximum

execution times of the two transports.

1This limitation is being removed in the near future.

15

Algorithm MPI Buffer Size Faster Avg % Diff Higher Max % Diff
Type Function

Linear Bcast 1 TCP 49.4 TCP 64.0
Linear Bcast 100 TCP 59.4 TCP 71.8
Linear Bcast 1000 TCP 59.0 TCP 79.7
Linear Gather 1 TCPSessions 4.3 TCP 0.4
Linear Gather 100 TCP 24.0 TCPSessions 9.1
Linear Gather 1000 TCP 50.6 TCPSessions 145.4
Ring Bcast 1 TCP 21.7 TCPSessions 70.5
Ring Bcast 100 TCP 11.2 TCP 114.3
Ring Bcast 1000 TCP 2.4 TCP 98.5
Ring Gather 1 TCP 21.7 TCPSessions 50.2
Ring Gather 100 TCP 34.6 TCP 2.4
Ring Gather 1000 TCP 140.4 TCPSessions 107.7

Binomial Bcast 1 TCP 87.7 TCP 96.4
Binomial Bcast 100 TCP 115.0 TCPSessions 59.0
Binomial Bcast 1000 TCP 102.8 TCPSessions 96.8
Binomial Gather 1 TCP 8.0 TCP 155.4
Binomial Gather 100 TCP 3.6 TCP 134.2
Binomial Gather 1000 TCP 42.2 TCPSessions 57.3

Table 4.1 Results from every combination of algorithm type, MPI function, and buffer size

16

Figure 4.2 Linear Gather (top left), Ring Gather (top right), and Binomial Gather (bottom center)

17

Figure 4.3 Binomial broadcast with buffer size of 100 on TCPSessions transport (top) vs.
Binomial broadcast with buffer size of 100 on TCP transport (bottom)

18

CHAPTER 5

CONCLUSION

This chapter concludes the thesis by discussing the results from Chapter 4, the limits of the

work, and future work that could build upon the work accomplished in this project.

5.1 Discussion of Results

The TCP transport outperforms the TCPSessions transport in all but one test, where

TCPSessions was slightly faster. This is expected for the reasons stated in Chapter 4: the TCP

transport requires less indirect communication since it builds connections between all processes

upon initialization. The effects of this store-and-forward mechanism are often more pronounced at

larger buffer sizes, because message forwarding involves copying the application buffer multiple

times. If the application buffer is large, it will take longer to copy, making each forward slower.

In general, the numbers generated by these benchmark applications were quite small. This means

that the results include natural variance introduced by the inherent volatility of a system frequently

used for computational research.

While the TCP transport tends to outperform the TCPSessions transport during MPI

function execution, the opposite is true for initialization. Importantly, the time saved from

initialization using the TCPSessions transport far outweighs the time saved from function

execution using the TCP transport. At 32 processes, the TCP transport took over seven seconds

to initialize while the TCPSessions transport took less than 0.1 seconds. Further, using the

TCPSessions transport enabled the use of far more processors during one job by lowering the

number of connections required upon initialization. Therefore, the TCPSessions transport is better

for applications that require a large number of processors.

19

Another result of this project was the implementation of a functioning MPI Sessions API

in ExaMPI. Because ExaMPI is designed with research and readability in mind, having MPI

Sessions added to the code base will allow for faster and easier experimentation with the various

functionality that MPI Sessions provides. Additionally, once MPI Sessions is officially added to

the MPI Standard, the work of this project will serve as a useful resource for developers of other

MPI middleware attempting to implement MPI Sessions themselves.

The final result of this project to be discussed is the creation of topological communication

algorithms. These communication algorithms were designed as a ring, so that each process only

communicates with its immediate neighbors in the process rank order. This was done in order to

take advantage of the small number of connections made by the TCPSessions transport. However,

once a forwarding protocol was added to the TCPSessions transport, we found that the linear and

binomial communication algorithms outperformed the ring communication algorithm despite the

overhead associated with forwarding messages. Topological communication algorithms, such as

ring algorithms, would be more relevant in situations where message forwarding is particularly

expensive or impossible, but the ability to experiment in such situations was not present during the

course of this project.

5.2 Limitations

The most significant limitation of this project was the amount of available system resources.

Because ExaMPI is currently only compatible with the job scheduler Slurm, the number of systems

that could be used to generate results was severely limited. There is currently only one cluster at

UTC that has Slurm installed and configured, but it is a small system that is almost always running

at maximum capacity. Testing the changes made to ExaMPI during this project on multiple nodes

of a cluster would require exclusive use of several nodes, which was unrealistic given the popularity

of the only compatibly cluster. Therefore, all of the results in this thesis were gathered on one node

with 128 available cores. It is likely that the TCPSessions transport would perform worse when

used between nodes in a cluster as the socket calls that occur during message forwarding are

more expensive over a network than they are within a node. This hypothesis cannot currently be

20

tested, though, because of a lack of a compatible and available system. Additionally, though the

ring communication algorithms performed worse than the linear and binomial algorithms in these

conditions, it is possible that they would perform at similar or even faster speeds when message

forwarding is more expensive.

5.3 Future Work

There are several natural continuations of the work done for this thesis. First, enabling

more interaction between the runtime system, job scheduler, and MPI application would allow for

the creation of better process sets for use by MPI Sessions. For example, a user might want to

ask the job scheduler to allocate a set of processes that are contained within a physical hardware

topology such as a ring. By passing this set of processes from the job scheduler to the runtime

system to the MPI application, it would be possible to create a virtual communication topology

that matches the hardware topology passed from the job scheduler. This would enable better data

locality, which has been shown to increase application and network performance [1].

Similarly, enabling the runtime system of ExaMPI to modify process sets during the MPI

application would yield interesting results. This concept, called dynamic process sets, is one way

that MPI could be made more elastic. Currently, MPI application rely on the number of processes

to be constant throughout its execution, which makes it difficult to run such applications on the

cloud. Dynamic process sets could be the key to removing the restriction on changing the number

of processes, which would allow for MPI applications to be run on far more systems than currently

possible.

Another opportunity is to combine sessions, topologies, and direct-to-persistent collective

operation constructors. In such a model, general-purpose communicators would be completely

avoided in favor of a series of topological collective operations that derived directly from psets.

This is a logical extension to the Sessions model and collective and topology chapters of MPI in a

future edition of the standard, such as MPI-5.

Finally, a necessary addition to ExaMPI in order for the changes from this project to be fully

utilized is a method of automatically selecting topological transports and algorithms at runtime or

21

compile time. Currently, a user must specify whether they want to use them, which means that

most users will likely ignore the option in favor of what they know. By analyzing the amount of

collective communication, point-to-point communication, processes, and necessary connections,

ExaMPI may be able to automatically speed up an MPI application’s execution time by selecting

topological transports and algorithms that better suit the nature of the application.

22

REFERENCES

[1] Agung, M., Amrizal, M. A., Egawa, R., and Takizawa, H. (2019). An automatic MPI

process mapping method considering locality and memory congestion on NUMA systems. In

2019 IEEE 13th International Symposium on Embedded Multicore/Many-core Systems-on-Chip

(MCSoC), pages 17–24. IEEE. 21

[2] Dumas, J. (2016). Computer Architecture: Fundamentals and Principles of Computer Design.

CRC Press. 14

[3] Graham, R. L., Woodall, T. S., and Squyres, J. M. (2006). Open MPI: A flexible high

performance MPI. In Wyrzykowski, R., Dongarra, J., Meyer, N., and Waśniewski, J., editors,

Parallel Processing and Applied Mathematics, pages 228–239, Berlin, Heidelberg. Springer

Berlin Heidelberg. 6

[4] Gropp, W., Lusk, E., Doss, N., and Skjellum, A. (1996). A high-performance, portable

implementation of the MPI Message Passing Interface standard. Parallel computing, 22(6):789–

828. 6

[5] Hjelm, N., Pritchard, H., Gutiérrez, S. K., Holmes, D. J., Castain, R., and Skjellum, A. (2019).

MPI Sessions: Evaluation of an implementation in Open MPI. In 2019 IEEE International

Conference on Cluster Computing (CLUSTER), pages 1–11. IEEE. 5

[6] Holmes, D., Mohror, K., Grant, R. E., Skjellum, A., Schulz, M., Bland, W., and Squyres,

J. M. (2016). MPI Sessions: Leveraging Runtime Infrastructure to Increase Scalability of

Applications at Exascale. In Proceedings of the 23rd European MPI Users’ Group Meeting,

EuroMPI 2016, page 121–129, New York, NY, USA. Association for Computing Machinery. 1

[7] Message Passing Interface Forum (2015). MPI: A Message Passing Interface Standard. https:

//www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf ; Last downloaded April 27, 2021. 1

23

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

[8] Message Passing Interface Forum (2020). MPI: A Message Passing Interface Standard. https:

//www.mpi-forum.org/docs/drafts/mpi-2020-draft-report.pdf ; Last downloaded April 27, 2021.

6

[9] Skjellum, A., Rüfenacht, M., Sultana, N., Schafer, D., Laguna, I., and Mohror, K.

(2020). ExaMPI: A modern design and implementation to accelerate Message Passing

Interface innovation. In High Performance Computing, pages 153–169. Springer International

Publishing. 6

24

https://www.mpi-forum.org/docs/drafts/mpi-2020-draft-report.pdf
https://www.mpi-forum.org/docs/drafts/mpi-2020-draft-report.pdf

APPENDIX A

GRAPHS

25

Figure A.1 Average initialization time of TCP transport vs TCPSessions transport

26

Figure A.2 Binomial bcast with buffer size 1 on TCP transport

27

Figure A.3 Binomial bcast with buffer size 1 on TCPSessions transport

28

Figure A.4 Binomial bcast with buffer size 100 on TCP transport

29

Figure A.5 Binomial bcast with buffer size 100 on TCPSessions transport

30

Figure A.6 Binomial bcast with buffer size 1000 on TCP transport

31

Figure A.7 Binomial bcast with buffer size 1000 on TCPSessions transport

32

Figure A.8 Binomial gather with buffer size 1 on TCP transport

33

Figure A.9 Binomial gather with buffer size 1 on TCPSessions transport

34

Figure A.10 Binomial gather with buffer size 100 on TCP transport

35

Figure A.11 Binomial gather with buffer size 100 on TCPSessions transport

36

Figure A.12 Binomial gather with buffer size 1000 on TCP transport

37

Figure A.13 Binomial gather with buffer size 1000 on TCPSessions transport

38

Figure A.14 Linear bcast with buffer size 1 on TCP transport

39

Figure A.15 Linear bcast with buffer size 1 on TCPSessions transport

40

Figure A.16 Linear bcast with buffer size 100 on TCP transport

41

Figure A.17 Linear bcast with buffer size 100 on TCPSessions transport

42

Figure A.18 Linear bcast with buffer size 1000 on TCP transport

43

Figure A.19 Linear bcast with buffer size 1000 on TCPSessions transport

44

Figure A.20 Linear gather with buffer size 1 on TCP transport

45

Figure A.21 Linear gather with buffer size 1 on TCPSessions transport

46

Figure A.22 Linear gather with buffer size 100 on TCP transport

47

Figure A.23 Linear gather with buffer size 100 on TCPSessions transport

48

Figure A.24 Linear gather with buffer size 1000 on TCP transport

49

Figure A.25 Linear gather with buffer size 1000 on TCPSessions transport

50

Figure A.26 Ring bcast with buffer size 1 on TCP transport

51

Figure A.27 Ring bcast with buffer size 1 on TCPSessions transport

52

Figure A.28 Ring bcast with buffer size 100 on TCP transport

53

Figure A.29 Ring bcast with buffer size 100 on TCPSessions transport

54

Figure A.30 Ring bcast with buffer size 1000 on TCP transport

55

Figure A.31 Ring bcast with buffer size 1000 on TCPSessions transport

56

Figure A.32 Ring gather with buffer size 1 on TCP transport

57

Figure A.33 Ring gather with buffer size 1 on TCPSessions transport

58

Figure A.34 Ring gather with buffer size 100 on TCP transport

59

Figure A.35 Ring gather with buffer size 100 on TCPSessions transport

60

Figure A.36 Ring gather with buffer size 1000 on TCP transport

61

Figure A.37 Ring gather with buffer size 1000 on TCPSessions transport

62

APPENDIX B

BENCHMARKS

63

int main(int argc, char **argv)

{

double start, end;

start = MPI_Wtime();

MPI_Init(&argc, &argv);

end = MPI_Wtime();

std::cout.precision(8);

std::cout << std::fixed;

std::cout << end - start << "\n";

MPI_Finalize();

}

Figure B.1 Timing benchmark for initialization

64

int main(int argc, char **argv)

{

double bcaststart, bcastend;

MPI_Init(&argc, &argv);

int rank, size;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

int root = 0;

int num_runs = 100;

int count = 1;

int my_num[count];

for(int i = 1; i <= count; i++)

{

my_num[i-1] = rank*i;

}

MPI_Request req;

MPI_Bcast_init(&my_num, count, MPI_INT, root, MPI_COMM_WORLD, &req);

std::cout.precision(8);

std::cout << std::fixed;

for(int i = 0; i < num_runs; i++)

{

bcaststart = MPI_Wtime();

MPI_Start(&req);

MPI_Wait(&req, MPI_STATUS_IGNORE);

bcastend = MPI_Wtime();

std::cout << bcastend - bcaststart << "\n";

}

MPI_Request_free(&req);

MPI_Finalize();

}

Figure B.2 Timing benchmark for bcast operation with buffer size of 1

65

int main(int argc, char **argv)

{

double bcaststart, bcastend;

MPI_Init(&argc, &argv);

int rank, size;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

int root = 0;

int num_runs = 100;

int count = 100;

int my_num[count];

for(int i = 1; i <= count; i++)

{

my_num[i-1] = rank*i;

}

MPI_Request req;

MPI_Bcast_init(&my_num, count, MPI_INT, root, MPI_COMM_WORLD, &req);

std::cout.precision(8);

std::cout << std::fixed;

for(int i = 0; i < num_runs; i++)

{

bcaststart = MPI_Wtime();

MPI_Start(&req);

MPI_Wait(&req, MPI_STATUS_IGNORE);

bcastend = MPI_Wtime();

std::cout << bcastend - bcaststart << "\n";

}

MPI_Request_free(&req);

MPI_Finalize();

}

Figure B.3 Timing benchmark for bcast operation with buffer size of 100

66

int main(int argc, char **argv)

{

double bcaststart, bcastend;

MPI_Init(&argc, &argv);

int rank, size;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

int root = 0;

int num_runs = 100;

int count = 1000;

int my_num[count];

for(int i = 1; i <= count; i++)

{

my_num[i-1] = rank*i;

}

MPI_Request req;

MPI_Bcast_init(&my_num, count, MPI_INT, root, MPI_COMM_WORLD, &req);

std::cout.precision(8);

std::cout << std::fixed;

for(int i = 0; i < num_runs; i++)

{

bcaststart = MPI_Wtime();

MPI_Start(&req);

MPI_Wait(&req, MPI_STATUS_IGNORE);

bcastend = MPI_Wtime();

std::cout << bcastend - bcaststart << "\n";

}

MPI_Request_free(&req);

MPI_Finalize();

}

Figure B.4 Timing benchmark for bcast operation with buffer size of 1000

67

int main(int argc, char **argv)

{

double gatherstart, gatherend;

MPI_Init(&argc, &argv);

int rank, size;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

int root = 0;

int num_runs = 100;

int count = 1;

int my_num[count];

for(int i = 1; i <= count; i++)

{

my_num[i-1] = rank*i;

}

MPI_Request req;

MPI_Gather_init(&my_num, count, MPI_INT, root, MPI_COMM_WORLD, &req);

std::cout.precision(8);

std::cout << std::fixed;

for(int i = 0; i < num_runs; i++)

{

gatherstart = MPI_Wtime();

MPI_Start(&req);

MPI_Wait(&req, MPI_STATUS_IGNORE);

gatherend = MPI_Wtime();

std::cout << gatherend - gatherstart << "\n";

}

MPI_Request_free(&req);

MPI_Finalize();

}

Figure B.5 Timing benchmark for gather operation with buffer size of 1

68

int main(int argc, char **argv)

{

double gatherstart, gatherend;

MPI_Init(&argc, &argv);

int rank, size;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

int root = 0;

int num_runs = 100;

int count = 100;

int my_num[count];

for(int i = 1; i <= count; i++)

{

my_num[i-1] = rank*i;

}

MPI_Request req;

MPI_Gather_init(&my_num, count, MPI_INT, root, MPI_COMM_WORLD, &req);

std::cout.precision(8);

std::cout << std::fixed;

for(int i = 0; i < num_runs; i++)

{

gatherstart = MPI_Wtime();

MPI_Start(&req);

MPI_Wait(&req, MPI_STATUS_IGNORE);

gatherend = MPI_Wtime();

std::cout << gatherend - gatherstart << "\n";

}

MPI_Request_free(&req);

MPI_Finalize();

}

Figure B.6 Timing benchmark for gather operation with buffer size of 100

69

int main(int argc, char **argv)

{

double gatherstart, gatherend;

MPI_Init(&argc, &argv);

int rank, size;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

int root = 0;

int num_runs = 100;

int count = 1000;

int my_num[count];

for(int i = 1; i <= count; i++)

{

my_num[i-1] = rank*i;

}

MPI_Request req;

MPI_Gather_init(&my_num, count, MPI_INT, root, MPI_COMM_WORLD, &req);

std::cout.precision(8);

std::cout << std::fixed;

for(int i = 0; i < num_runs; i++)

{

gatherstart = MPI_Wtime();

MPI_Start(&req);

MPI_Wait(&req, MPI_STATUS_IGNORE);

gatherend = MPI_Wtime();

std::cout << gatherend - gatherstart << "\n";

}

MPI_Request_free(&req);

MPI_Finalize();

}

Figure B.7 Timing benchmark for gather operation with buffer size of 1000

70

	Simplifying the creation of virtual topologies using MPI Sessions
	Recommended Citation

	Title
	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	1 Introduction
	1.1 Outline

	2 Background and Motivation
	2.1 Background
	2.1.1 Initialization
	2.1.2 Communicator and Group Creation

	2.2 Motivation

	3 Implementation
	3.1 Implementing the MPI Sessions API
	3.2 Changes to the Runtime System
	3.3 Dynamic Initialization
	3.4 Topological Connection Building
	3.5 Topological Communication Algorithms

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results
	4.2.1 Initialization Time
	4.2.2 MPI Function Execution Time

	5 Conclusion
	5.1 Discussion of Results
	5.2 Limitations
	5.3 Future Work

	REFERENCES
	A Graphs
	B Benchmarks

